Chia đều 3 cái bánh cho 2 bạn ta chia như sau: 2 cái bánh đầu ta phân cho mỗi bạn 1 cái.
Còn thừa 1 cái bánh ta chia đôi, mỗi bạn thêm \(\dfrac{1}{2}\) cái bánh. Vậy bạn Tròn đúng.
Chia đều 3 cái bánh cho 2 bạn ta chia như sau: 2 cái bánh đầu ta phân cho mỗi bạn 1 cái.
Còn thừa 1 cái bánh ta chia đôi, mỗi bạn thêm \(\dfrac{1}{2}\) cái bánh. Vậy bạn Tròn đúng.
Viết phân số biểu thị phần bánh mỗi bạn.
Tương tự HĐ1, em hãy quy đồng mẫu hai phân số \(\dfrac{{ - 3}}{5}\) và \(\dfrac{{ - 1}}{2}\)
Không quy đồng mẫu số, em hãy so sánh \(\dfrac{{31}}{{32}}\) và \(\dfrac{{ - 5}}{{57}}\)
Lớp 6A có \(\dfrac{4}{5}\) học sinh thích bóng bàn, \(\dfrac{7}{{10}}\) số học sinh thích bóng đá và \(\dfrac{1}{2}\) số học sinh thích bóng chuyền. Hỏi môn thể thao nào được các bạn học sinh lớp 6A yêu thích nhất?
Để giải quyết bài toán mở đầu, ta cần so sánh \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\). Em hãy thực hiện các yêu cầu sau:
• Viết hai phân số trên về hai phân số có cùng một mẫu dương bằng cách quy đồng mẫu số.
• So sánh hai phân số cùng mẫu vừa nhận được. Từ đó kết luận về phần bánh còn lại của hai bạn Vuông và Tròn
Quy đồng mẫu các phân số sau:
a) \(\dfrac{2}{3}\) và \(\dfrac{{ - 6}}{7}\)
b) \(\dfrac{5}{{{2^2}{{.3}^2}}}\) và \(\dfrac{{ - 7}}{{{2^2}.3}}\)
Mẹ có 15 quả táo, mẹ muốn chia đều số quả táo đó cho bốn anh em. Hỏi mỗi anh em được mấy quả táo và mấy phần của quả táo?
Em hãy nhắc lại quy tắc so sánh hai phân số có cùng mẫu (tử và mẫu đều dương), rồi so sánh hai phân số \(\dfrac{7}{{11}}\) và \(\dfrac{9}{{11}}\).
Quy đồng mẫu các phân số: \(\dfrac{{ - 3}}{4};\dfrac{5}{9};\dfrac{2}{3}\)