Đường thẳng \(d\) đi qua \(M\left( {0;0;50} \right)\) và có một vectơ chỉ phương \(\vec a = \left( {0;0;1} \right)\).
Đường thẳng \(d'\) đi qua \(M'\left( {20;0;50} \right)\) và có một vectơ chỉ phương \(\vec a' = \left( {0;1;0} \right)\).
Ta có \(\left[ {\vec a,\vec a'} \right] = \left( { - 1;0;0} \right)\) và \(\overrightarrow {MM'} \left( {20;0;0} \right)\).
Suy ra \(\left[ {\vec a,\vec a'} \right].\overrightarrow {MM'} = \left( { - 1} \right).20 + 0.0 + 0.0 = - 20 \ne 0.\)
Vậy hai đường thẳng \(d\) và \(d'\) chéo nhau.
Đúng 0
Bình luận (0)