Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung BC. Tiếp tuyến tại B với đường tròn tâm O cắt AC tại E. Gọi I là trung điểm của dây AC a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB²=EC.EA c) Biết bán kính đường tròn tâm O bằng 2cm, tính diện tích tam giác ABE Vẽ hình và giải giúp e với ạ
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ
Cho (O,R) đường kính AB, dây AC không đi qua tâm. Gọi H là trung điểm AC
a, Chứng minh OH//BC
b,Tiếp tuyến tại C (O) cắt OH tại M. Chứng minh MA là tiếp tuyến của đường tròn tâm O
c, Vẽ CK vuông góc với AB tại K. GỌi I là trung điểm của CK, đặt góc BAC = góc anfa. Chứng minh IK=R.sin anfa. cos anfa
d, Chứng minh 3 điểm M,I,B thẳng hàng
Ai giúp mình ý d vs ạ !
Cho đường tròn (O;R), đường kính AB, trên (O;R) lấy điểm C sao cho AC< BC. Tiếp tuyến tại B của (O) cắt AC tại D.
a) Chứng minh AD ⊥ BC từ đó chứng minh AC.AD=4R2
b) Gọi K là trung điểm BD, chứng minh KC là tiếp tuyến của (O;R).
Ai giúp mình với ạ. mình cảm ơn nhiều
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,
BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh BH . EC = BC. DH
c) Gọi M là trung điểm của BC. Tiếp tuyến của đường tròn tại B cắt OM tại P.
Chứng minh rằng DAP MAO =
Cho nửa đường tròn (O;R) đường kính AB và một điểm M trên đường tròn (M khác A và B). Tiếp tuyến tại A và B của (O) cắt tiếp tuyến tại M theo thứ tự ở C và D.
a) AC + BD = CD và AC.BD không đổi.
b) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
c) Giả sử . Tính diện tích tứ giác OMDB theo R.
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD