\(Ta\) \(có\) \(x^3+x^2+x+1=0\)
\(\Rightarrow\) \(\left(x^3+x^2\right)+\left(x+1\right)=0\)
\(\Rightarrow\) \(x^2.\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\) \(\left(x+1\right).\left(x^2+1\right)=0\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x+1=0\\x^2+1=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=-1\\x^2=-1\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=-1\\x=\varnothing\end{matrix}\right.\)
\(Vậy\) \(đa\) \(thức\) \(x^3+x^2+x+1\) \(có\) \(nghiệm\) \(x=-1\)