Gọi hai số cần tìm là a và b.
\(a+b=3\left(a-b\right)\)
\(\Rightarrow a+b=3a-b\)
\(\Rightarrow a-3a=-b-b\)
\(\Rightarrow-2a=-2b\)
\(\Rightarrow a=b\)
Do \(a=b\Rightarrow\frac{a}{b}=1\)
gọi 2 số cần tìm là a và b
vì tổng của hai số tự nhiên gấp 3 lần hiệu của chúng
nên ta có phương trình : \(a+b=3\left(a-b\right)\Leftrightarrow a+b=3a-3b\)
\(\Leftrightarrow b+3b=3a-a\Leftrightarrow4b=2a\Leftrightarrow2b=a\)
vì vậy ta có thương của chúng là \(\dfrac{a}{b}=2\) và \(\dfrac{b}{a}=\dfrac{1}{2}\)
vậy thương của hai số đó \(2\) và \(\dfrac{1}{2}\)