Ta có: P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 - xy - 6
nên P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 - xy - 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 - xy - 6
= (x3 + x3) + x2y + (xy2 - xy2) - xy + (3 - 6)
= 2x3 + x2y - xy -3.
Ta có: P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 - xy - 6
nên P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 - xy - 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 - xy - 6
= (x3 + x3) + x2y + (xy2 - xy2) - xy + (3 - 6)
= 2x3 + x2y - xy -3.