Bài 13. Ứng dụng hình học của tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.

datcoder
27 tháng 10 lúc 17:46

Thể tích hình cần tính là:

\(V = \pi \int\limits_0^2 {{{\left( {2x - {x^2}} \right)}^2}dx}  = \pi \int\limits_0^2 {\left( {4{x^2} - 4{x^3} + {x^4}} \right)dx}  = \pi \left( {\frac{4}{3}{x^3} - {x^4} + \frac{{{x^5}}}{5}} \right)\left| \begin{array}{l}2\\0\end{array} \right.\)

\( = \pi \left( {\frac{4}{3}{{.2}^3} - {2^4} + \frac{{{2^5}}}{5}} \right) = \frac{{16\pi }}{{15}}\)