A = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}-\sqrt{2}-\sqrt{10}\)
Ta có : B = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow B^2=16-2\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)
\(=16-2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(=16-2\sqrt{24-8\sqrt{5}}\)
\(=16-2\sqrt{\left(2\sqrt{5}-2\right)^2}=16-2\left(2\sqrt{5}-2\right)\)
\(=20-4\sqrt{5}\)
Vì \(8+2\sqrt{10+\sqrt{5}}>8-2\sqrt{10+2\sqrt{5}}\)
\(\Rightarrow B>0\)
\(\Rightarrow B=\sqrt{20-4\sqrt{5}}=2\sqrt{5-\sqrt{5}}\)
\(\Rightarrow A=B-\sqrt{2}-\sqrt{10}=2\sqrt{5-\sqrt{5}}-\sqrt{2}-\sqrt{10}=2\)