\(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}=\sqrt{4-2.2.\sqrt{3}+3}+\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\sqrt{3}-1=1\)
\(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}=\sqrt{4-2.2.\sqrt{3}+3}+\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\sqrt{3}-1=1\)
rút gọn biểu thức
a, \(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}-\dfrac{1}{\sqrt{7+\sqrt{24}+1}}\)
b,\(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
c,\(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4}+\sqrt{7}}+\dfrac{4-\sqrt{7}}{3\sqrt{7}-\sqrt{4}-\sqrt{7}}\)
a) \(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
e) \(\sqrt{9+4\sqrt{5}}\)
f) \(\sqrt{23+8\sqrt{7}}\)
không dùng máy tính , tính giá trị của các biểu thức sau
1)\(\left(1+\sqrt{2}+\sqrt{3}\right)\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)
2)\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
3)\(\dfrac{2+\sqrt{3}}{\sqrt{7-4\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{7+4\sqrt{3}}}\)
4)\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
5)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
6)\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
cho M= \(\sqrt{4+\sqrt{7}}-\sqrt{\sqrt{7}+\sqrt{3}}\) chứng minh M=\(\sqrt{2}\)
cho M=\(\dfrac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}\) chứng minh M=-\(\sqrt{2}\)
CHO M=\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}\)+\(\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\) chứng minh M=\(\sqrt{6}\)
giúp mk vs mk cần gấp lắm
B1: tính : A = \(\sqrt{7+4\sqrt{3}}\) + \(\sqrt{7-4\sqrt{3}}\)
B2: cho P= 3x-\(\sqrt{x^2-10x+25}\)
a, rút gọn P
b, tính P khi x=2
B3: rút gọn : M = \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với x khác 1
giúp em zới ạ em cảm mơn nhìu nhìu
1.)\(\sqrt{11+4\sqrt{6}}\)
2.)\(\sqrt{7-4\sqrt{3}}-\sqrt{8+2\sqrt{15}}\)
3.)\(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4.)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
5.)\(\sqrt{4a^2-12a+9}vớia\ge\dfrac{3}{2}\)
6.)\(\sqrt{a^2-6a+9}+\sqrt{9+64a^2-48a}với\dfrac{3}{8}< a< 3\)
rút gọn
a) A=\(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
b) B=\(\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) C=\(\left(\sqrt{3}+\sqrt{5}\right)\times\sqrt{7-2\sqrt{10}}\)
lm nhanh giúp mk nhé
thực hiện phép tính
A=\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2-\sqrt{2-\sqrt{3}}}}\)
B=\(\dfrac{6+4\sqrt{2}}{\sqrt{2+\sqrt{6+4\sqrt{2}}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
Tính :
A=\(\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}}-2}\)
B= \(\sqrt{6+2\sqrt{2}-\sqrt{3}-\sqrt{4+2\sqrt{3}}}\)
Tính:
a) \(A=\sqrt{8-2\sqrt{15}}\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
b) \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
c) \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}+}\sqrt{3}\right):\sqrt{3}\)
d) \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)