mk ko chép đề đâu nha
\(S=1+\dfrac{-1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\)
đặt \(7S=7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}\)
=>\(7S+S=\left(7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}\right)+\left(1-\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\right)\)
=>\(8S=7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}+1-\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\)
=>\(8S=7+\left(-1+1\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+...+\left(\dfrac{1}{7^{2015}}-\dfrac{1}{7^{2015}}\right)+\dfrac{1}{7^{2016}}\)
=> \(8S=7+\dfrac{1}{7^{2016}}\)
\(\Rightarrow S=\dfrac{7+\dfrac{1}{7^{2016}}}{8}\)
Gỉa sử : \(-\dfrac{1}{7}=a\)
Thay vào S ,có :
\(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) (1)
=> a.S = a( \(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) )
= \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) (2)
Lấy (2) - (1) ,CÓ :
aS-S=( \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) ) - ( \(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) ) aS-S= \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) - \(1-a-a^2-.........-a^{2016}\)aS-S = a2017 -1 => S(a-1) = a2017 -1
=> S = \(\dfrac{a^{2017}-1}{a-1}\)
Thay a= -1/7 vào S = \(\dfrac{a^{2017}-1}{a-1}\) ,có :
S = \(\dfrac{\left(\dfrac{-1}{7}\right)^{2017}-1}{-\dfrac{1}{7}-1}=\dfrac{\left(-\dfrac{1}{7}\right)^{2017}}{-\dfrac{8}{7}}\)