Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kudo shinichi

tính

\(S=\left(\dfrac{-1}{7}\right)^0+\left(\dfrac{-1}{7}\right)^1+\left(\dfrac{-1}{7}\right)^2+...+\left(\dfrac{-1}{7}\right)^{2016}\)

kudo shinichi
9 tháng 5 2017 lúc 8:31

mk ko chép đề đâu nha

\(S=1+\dfrac{-1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\)

đặt \(7S=7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}\)

=>\(7S+S=\left(7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}\right)+\left(1-\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\right)\)

=>\(8S=7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}+1-\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\)

=>\(8S=7+\left(-1+1\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+...+\left(\dfrac{1}{7^{2015}}-\dfrac{1}{7^{2015}}\right)+\dfrac{1}{7^{2016}}\)

=> \(8S=7+\dfrac{1}{7^{2016}}\)

\(\Rightarrow S=\dfrac{7+\dfrac{1}{7^{2016}}}{8}\)

lê thị hương giang
9 tháng 5 2017 lúc 8:34

Gỉa sử : \(-\dfrac{1}{7}=a\)

Thay vào S ,có :

\(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) (1)

=> a.S = a( \(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) )

= \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) (2)

Lấy (2) - (1) ,CÓ :

aS-S=( \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) ) - ( \(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) ) aS-S= \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) - \(1-a-a^2-.........-a^{2016}\)

aS-S = a2017 -1 => S(a-1) = a2017 -1

=> S = \(\dfrac{a^{2017}-1}{a-1}\)

Thay a= -1/7 vào S = \(\dfrac{a^{2017}-1}{a-1}\) ,có :

S = \(\dfrac{\left(\dfrac{-1}{7}\right)^{2017}-1}{-\dfrac{1}{7}-1}=\dfrac{\left(-\dfrac{1}{7}\right)^{2017}}{-\dfrac{8}{7}}\)


Các câu hỏi tương tự
Nhã Doanh
Xem chi tiết
Nguyễn Đức Trí
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
Đoàn Ngọc Yến Nhi
Xem chi tiết
Đoàn Thị Diễm My
Xem chi tiết
Ely Trần
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Thu Linh
Xem chi tiết
Nguyễn Minh Bảo Anh
Xem chi tiết