P=\(\dfrac{2010\left(2010+1\right)-1}{2010^2+2009}+\dfrac{744-\left[\left(377+2\right).733\right]}{377.733+722}\)
=\(\dfrac{2010^2+2010-1}{2010^2+2009}+\dfrac{744-\left[377.733+1466\right]}{377.733+722}\)
=\(\dfrac{2010^2+2009}{2010^2+2009}+\dfrac{-722-377.733}{377.733+722}\)
=\(1+\left(-1\right)=0\)
Vậy P=0
\(P=\dfrac{2010\cdot2011-1}{2010^2+2009}+\dfrac{744-379\cdot733}{377\cdot733+722}=\dfrac{2010\cdot2011-2010+2009}{2010^2+2009}+\dfrac{733-379\cdot733+11}{377\cdot733+733-11}=\dfrac{2010\cdot\left(2011-1\right)+2009}{2010^2+2009}+\dfrac{733\cdot\left(1-379\right)+11}{733\cdot\left(377+1\right)-11}=\dfrac{2010^2+2009}{2010^2+2009}+\dfrac{733\cdot\left(-378\right)+11}{733\cdot378-11}=1+\left(-1\right)=0\)