\(\mathop {\lim }\limits_{x \to - \infty } {x^4} = + \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } {x^4} = + \infty \)
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}};\)
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}};\)
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\)
e) \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}};\)
g) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}.\)
Tính \(\mathop {\lim }\limits_{x \to - \infty } \frac{{3x + 2}}{{4x - 5}}.\)
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right);\)
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}};\)
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}.\)
Cho hai hàm số \(f\left( x \right) = {x^2} - 1,g\left( x \right) = x + 1.\)
a) Tính \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
b) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
c) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
d) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
e) Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\)và so sánh \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\)
Tính \(\mathop {\lim }\limits_{x \to - {4^ + }} \left( {\sqrt {x + 4} + x} \right)\)
Biết rằng hàm số \(f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5.\) Trong trường hợp này có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) hay không? Giải thích.
Tính:
a) \(\mathop {\lim }\limits_{x \to 2} \left[ {\left( {x + 1} \right)\left( {{x^2} + 2x} \right)} \right];\)
b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + x + 3} .\)
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} {x^2};\)
b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)
Tính: \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{1}{{x + 2}}.\)