Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kitana

Tính giá trị của đa thức \(\left(x^{31}-5x^{10}+3\right)^{2018}\)

 tại x= 9-\(\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

Nguyễn Việt Lâm
19 tháng 8 2021 lúc 17:12

\(x=9-\dfrac{2}{\sqrt{9-4\sqrt{5}}}+\dfrac{2}{\sqrt{9+4\sqrt{5}}}=9-\dfrac{2}{\sqrt{\left(\sqrt{5}-2\right)^2}}+\dfrac{2}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=9-\dfrac{2}{\sqrt{5}-2}+\dfrac{2}{\sqrt{5}+2}=9+\dfrac{2\left(\sqrt{5}-2-\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

\(=9+\left(-8\right)=1\)

\(\Rightarrow\left(1^{31}-5.1^{10}+3\right)^{2018}=\left(-1\right)^{2018}=1\)


Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Thị Hương
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Han Sara
Xem chi tiết
phạm kim liên
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết