a . Ta có : \(A=\frac{25^3.5^5}{6.5^{10}}=\frac{5^{11}}{6.5^{10}}=\frac{5}{6}\)
b . Ta có : \(B=\frac{2^6.6^3}{8^2.9^2}=\frac{2^5.\left(2.3\right)^3}{\left(2^3\right)^2.\left(3^2\right)^2}=\frac{2^8.3^3}{2^6.3^4}=\frac{4}{3}\)
c . Ta có :
\(C=\frac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}=\frac{\left(3.5\right)^3+5.\left(3.5\right)^2-5^3}{\left(6.3\right)^3+6.\left(3.6\right)^2-6^3}=\frac{5^3.\left(3^3-3^2-1\right)}{6^3.\left(3^3+3^2-1\right)}=\frac{5^3}{6^3}\)
d . Ta có :
\(D=\frac{\left(7^4-7^3\right)^2}{49^3}=\frac{7^4-7^3}{49^3}.\left(7^4-7^3\right)=\left(\frac{7^4}{49^3}-\frac{7^3}{49^3}\right).\left(7^4-7^3\right)\)
\(=\left(\frac{7^4}{7^6}-\frac{7^3}{7^6}\right).\left(7^4-7^3\right)=\left(\frac{1}{7^2}-\frac{1}{7^3}\right).\left(7^4-7^3\right)\)
\(=\frac{6}{7^3}.\left(7^4-7^3\right)=\frac{6}{7^3}.7^3.\left(7-1\right)=36\)
a) \(A=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}=\frac{5^6.5^5}{6.5^{10}}=\frac{5^{11}}{6.5^{10}}=\frac{5}{6}\)
b) \(B=\frac{2^5.6^3}{8^2.9^2}=\frac{2^5.\left(2.3\right)^3}{\left(2^3\right)^2.\left(3^2\right)^2}=\frac{2^5.2^3.3^3}{2^6.3^4}=\frac{2^8.3^3}{2^6.3^4}=\frac{2^2}{3}=\frac{4}{3}\)
a) \(A=\frac{25^5.5^5}{6.5^{10}}\)=\(\frac{\left(5^2\right)^3.5^5}{6.5^{10}}=\frac{5^6.5^5}{6.5^{10}}=\frac{5^{11}}{6.5^{10}}=\frac{5}{6}\)
b)\(B=\frac{2^5.6^3}{8^2.9^2}=\frac{2^5.\left(2.3\right)^3}{\left(2^3\right)^2.\left(3^2\right)^2}=\frac{2^5.2^3.3^3}{2^6.3^4}=\frac{2^8.3^3}{2^6.3^4}=\frac{2^2}{3}=\frac{4}{3}\)
c)\(C=\frac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}=\frac{\left(3.5\right)^3+5.\left(3.5\right)^2-5^3}{\left(3.6\right)^3+6.\left(3.6\right)^2-6^3}\)=\(\frac{3^3.5^3+5.3^2.5^2-5^3}{3^3.6^3+6.3^2.6^2-6^3}=\frac{5^3.\left(3^3+3^2-1\right)}{6^3.\left(3^3+3^2-1\right)}=\frac{5^3}{6^3}=\frac{125}{216}\)
d)\(D=\frac{\left(7^4-7^3\right)^2}{49^3}=\frac{2058^2}{\left(7^2\right)^3}=\frac{7^3.6}{7^6}=\frac{6}{7^3}=\frac{6}{343}\)