\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{6^{12}-6^{11}}\)
\(=\frac{2^{12}3^{10}\left(1+5\right)}{6^{11}\left(6-1\right)}\)
\(=\frac{2^{10}\cdot3^{10}\cdot5\cdot2^2}{6^{10}\cdot6\cdot5}\)
\(=\frac{6^{10}\cdot20}{6^{10}\cdot30}\)
\(=\frac{2}{3}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\) (Sau đó phân tách ra)
=\(\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
=\(\frac{2^{12}.3^{10}+2^9.3^9.2^33.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
=\(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\) (Gộp và giải như biểu thức thường)
=\(\frac{2^{12}.3^{10}.\left(1+1.5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)
=\(\frac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}\) (Rút gọn giữa tử và mẫu)
=\(\frac{2.1.6}{1.3.5}=\frac{2.1.2}{1.1.5}=\frac{4}{5}\)
có thể làm rõ ở phần 2^12*3^10+2^12*3^10*5/2^12*3^12-6^11