Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = 5x - {x^2}\), \(y = {x^2} - x\) và hai đường thẳng \(x = 0\), \(x = 2\) là
\(S = \int\limits_0^2 {\left| {\left( {5x - {x^2}} \right) - \left( {{x^2} - x} \right)} \right|dx} = \int\limits_0^2 {\left| {6x - 2{x^2}} \right|dx} = 2\int\limits_0^2 {\left| {{x^2} - 3x} \right|dx} \)
Ta có \({x^2} - 3x = 0 \Leftrightarrow x = 0\) hoặc \(x = 3\)
Do đó \(S = \left| {\int\limits_0^2 {\left( {{x^2} - 3x} \right)dx} } \right| = \left| {\left. {\left( {\frac{{{x^3}}}{3} - 3\frac{{{x^2}}}{2}} \right)} \right|_0^2} \right| = \left| { - \frac{{10}}{3}} \right| = \frac{{10}}{3}\)
Đúng 0
Bình luận (0)