Tính diện tích hình phẳng giới hạn bởi các đường:
y=\(\left|lgX\right|\) , y=0,x=\(\frac{1}{10}\), x=10
Trong các cặp hình phẳng giới hạn bởi các đường sau, cặp nào có diện tích bằng nhau :
a) \(\left\{y=x+\sin x;y=x,0\le x\le\pi\right\}\) và \(\left\{y=x+\sin x;y=x;\pi\le x\le2\pi\right\}\)
b) \(\left\{y=\sin x;y=0;0\le x\le\pi\right\}\) và \(\left\{y=\cos x;y=0;0\le x\le\pi\right\}\)
c) \(\left\{y=2x-x^2;y=x\right\}\) và \(\left\{y=2x-x^2;y=2-x\right\}\)
d) \(\left\{y=\log x;y=0;x=10\right\}\) và \(\left\{y=10^x;x=0;y=10\right\}\)
e) \(\left\{y=\sqrt{x};y=x^2\right\}\) và \(\left\{y=\sqrt{1-x^2};y=1-x\right\}\)
Tính diện tích hình phẳng giới hạn bởi các đường sau :
a) \(y=2x-x^2;x+y=2\)
b) \(y=x^3-12x;y=x^2\)
c) \(x+y=1;x+y=-1;x-y=1;x-y=-1\)
d) \(y=\dfrac{1}{1+x^2};y=\dfrac{1}{2}\)
e) \(y=x^3-1\) và tiếp tuyến với \(y=x^3-1\) tại điểm \(\left(-1;-2\right)\)
Tính diện tích hình phẳng giới hạn bởi đường cong \(y=x^2+1\), tiếp tuyến với đường này tại điểm \(M\left(2;5\right)\) và trục Oy ?
Diện tích hình phẳng giới hạn bởi đường thẳng y=x+3 , đường cong y=x^2+1 là
Tính thể tích các khối tròn xoay khi quay hình phẳng xác định bởi :
a) \(y=2-x^2;y=1\), quanh trục Ox
b) \(y=2x-x^2;y=x\), quanh trục Ox
c) \(y=\left(2x+1\right)^{\dfrac{1}{3}};x=0;y=3\), quanh trục Oy
d) \(y=x^2+1;x=0\) và tiếp tuyến với \(y=x^2+1\) tại điểm \(\left(1;2\right)\), quanh trục Ox
e) \(y=\ln x;y=0;x=e\), quanh trục Oy
Tính diện tích hình phẳng giới hạn bởi các đường thẳng y=x, y=x4.
Tính thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox hình phẳng giới hạn bởi các đường \(y=\dfrac{1}{x};y=0;x=1;x=a\) (\(a>1\))
Gọi thể tích đó là \(V\left(a\right)\). Xác định thể tích của vật thể khi \(a\rightarrow+\infty\) (tức là \(\lim\limits_{a\rightarrow+\infty}V\left(a\right)\)