\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2021}+\sqrt{2022}}\)
\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2022}-\sqrt{2021}}{\left(\sqrt{2021}+\sqrt{2022}\right)\left(\sqrt{2022}-\sqrt{2021}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2022}-\sqrt{2021}=\sqrt{2022}-1\)