\(\begin{array}{l}f'\left( x \right) = {\left( {\sqrt x } \right)'} = \frac{1}{{2\sqrt x }}\\ \Rightarrow f'\left( 9 \right) = \frac{1}{{2\sqrt 9 }} = \frac{1}{{2.3}} = \frac{1}{6}\end{array}\)
\(\begin{array}{l}f'\left( x \right) = {\left( {\sqrt x } \right)'} = \frac{1}{{2\sqrt x }}\\ \Rightarrow f'\left( 9 \right) = \frac{1}{{2\sqrt 9 }} = \frac{1}{{2.3}} = \frac{1}{6}\end{array}\)
Tính đạo hàm của hàm số \(f\left( x \right) = {10^x}\) tại điểm \({x_0} = - 1\)
Tính đạo hàm của hàm số \(f\left( x \right) = \tan x\) tại điểm \({x_0} = - \frac{\pi }{6}\)
Tính đạo hàm của hàm số \(f\left( x \right) = \cot x\) tại điểm \({x_0} = - \frac{\pi }{3}\)
Tính đạo hàm của hàm số \(f\left( x \right)= \log x\) tại điểm \({x_0} = \frac{1}{2}\)
Tính đạo hàm của hàm số f(x) = sinx tại điểm \({x_0} = \frac{\pi }{2}\)
Tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \({x_0} = 1\) bằng định nghĩa
Cho hàm số \(y = {x^{22}}\)
a) Tính đạo hàm của hàm số trên tại điểm x bất kì
b) Tính đạo hàm của hàm số trên tại điểm \({x_0} = - 1\)
a) Tính đạo hàm của hàm số \(y = {x^2}\) tại điểm \({x_0}\) bất kì bằng định nghĩa
b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì
Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\)
a) Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh
\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)
b) Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\)