B\(\) = \(\dfrac{191}{210}\) + \(\dfrac{161}{240}\) + \(\dfrac{129}{272}\) + \(\dfrac{95}{306}\)
B = \(\dfrac{191}{14.15}\) + \(\dfrac{161}{15.16}\) + \(\dfrac{129}{16.17}\) + \(\dfrac{95}{17.18}\)
B = \(\dfrac{191}{14}\) - \(\dfrac{191}{15}\) + \(\dfrac{161}{15}\) - \(\dfrac{161}{16}\) + \(\dfrac{129}{16}\) - \(\dfrac{129}{17}\) + \(\dfrac{95}{17}\) - \(\dfrac{95}{18}\)
B = \(\dfrac{191}{14}\) - ( \(\dfrac{191}{15}\) - \(\dfrac{161}{15}\) ) - ( \(\dfrac{161}{16}\) - \(\dfrac{129}{16}\) ) - ( \(\dfrac{129}{17}\) - \(\dfrac{95}{17}\) ) - \(\dfrac{95}{18}\)
B = \(\dfrac{191}{14}\) - 2 - 2 - 2 - \(\dfrac{95}{18}\)
B = \(\dfrac{191}{14}\) - ( 2 + 2 + 2 + \(\dfrac{95}{18}\) )
B = \(\dfrac{191}{14}\) - \(\dfrac{203}{18}\)
B = \(\dfrac{149}{63}\)
kq = \(\dfrac{8483005444}{4194892800}=\dfrac{2120751361}{1048723200}\)
tick tui nha
mấy bạn giải ra cho mình đi
bài này là tính nhanh đó