Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thu Phạm

Tính :

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

Võ Đông Anh Tuấn
8 tháng 9 2016 lúc 8:40

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{3.4}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{2015}{2017}\right)}\)

\(\Rightarrow A=2017\)

Võ Đông Anh Tuấn
8 tháng 9 2016 lúc 8:37

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{2}{2016.2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+\frac{2015}{2017}}\)

\(A=2017\)

Võ Đông Anh Tuấn
8 tháng 9 2016 lúc 8:40

Sao ra 2 cái dữ nè


Các câu hỏi tương tự
Trần Thị Đảm
Xem chi tiết
Trần Thị Đảm
Xem chi tiết
Trần Thị Đảm
Xem chi tiết
trần thị lan chi
Xem chi tiết
Linh nguyen phan khanh
Xem chi tiết
Trần Thị Đảm
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Miko
Xem chi tiết
Hà Như Thuỷ
Xem chi tiết