=\(\dfrac{2^2.2^2.3^2.....9^2}{1.2^2.3^2.4^2....9^2.10}\)=\(\dfrac{2^2}{10}\)=\(\dfrac{2}{5}\)
=\(\dfrac{2^2.2^2.3^2.....9^2}{1.2^2.3^2.4^2....9^2.10}\)=\(\dfrac{2^2}{10}\)=\(\dfrac{2}{5}\)
\(a.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
Tính :
a) \(\dfrac{17}{23}.\dfrac{8}{16}.\dfrac{23}{17}.\left(-80\right).\dfrac{3}{4}\)
b) \(\dfrac{5}{11}.\dfrac{18}{29}-\dfrac{5}{11}.\dfrac{8}{29}+\dfrac{5}{11}.\dfrac{19}{29}\)
c) \(\left(\dfrac{13}{23}+\dfrac{1313}{2323}-\dfrac{131313}{232323}\right).\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)
d) \(\dfrac{1^2}{1.2}.\dfrac{2^{2^{ }}}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}.\dfrac{5^2}{5.6}.\dfrac{6^2}{6.7}.\dfrac{7^2}{7.8}.\dfrac{8^2}{8.9}.\dfrac{9^2}{9.10}\)
e) \(\dfrac{2^2}{3}.\dfrac{3^2}{8}.\dfrac{4^2}{15}.\dfrac{5^2}{24}.\dfrac{6^2}{35}\dfrac{7^2}{48}.\dfrac{8^2}{63}.\dfrac{9^2}{80}\)
TÍnh A=\(\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
B=\(\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+...+\dfrac{5}{98.99.100.101}\)
C=\(\dfrac{6}{1^2+2^2}+\dfrac{10}{2^2+3^2}+\dfrac{14}{3^2+4^2}+...+\dfrac{398}{99^2.100^2}\)
tinh tong : \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) +.............+\(\dfrac{2}{2008.2009}\)
tìm x:
a,\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right).\left(x-1\right)+\dfrac{1}{10}.x=x-\dfrac{9}{10}\)
b,\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right).\left(x-2\right)+x=\dfrac{149}{99}.x-\dfrac{98}{99}\)
1) Rút gọn
A =\(\dfrac{\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+.......+\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{19}+\dfrac{1}{20}}\)
2) Tìm x
a/ \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{x.\left(x+1\right)}=\dfrac{2016}{2017}\)
Tính A= \(\dfrac{2}{1.2}+\dfrac{2}{2.3}+.......+\dfrac{2}{98.99}+\dfrac{2}{99.100}\)
Tính biểu thức sau:
\(A=\left(2016-1-2-3-...-2017\right)\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2016.2017}\)
câu khống chế trong thi học kì trường mk đó!
\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)=?