A+B=(1.99+2.98+...+99.1)+(1.101+2.102+...+99.199)
=(1.99+1.101)+(2.98+2.102)+...+(99.1+99.199)
=1.(99+101)+2.(98+102)+...+99(1+199)
=200+2.200+...+99.200
=200.(1+2+3+4+...+99)
=200.4950
=.....
A+B=(1.99+2.98+...+99.1)+(1.101+2.102+...+99.199)
=(1.99+1.101)+(2.98+2.102)+...+(99.1+99.199)
=1.(99+101)+2.(98+102)+...+99(1+199)
=200+2.200+...+99.200
=200.(1+2+3+4+...+99)
=200.4950
=.....
So sánh :
A= 2016/2017 + 2017/2018
B = 2016+2017/2017+2018
hELP ME!!
so sanh
A=\(\frac{2016^{2016}+1}{2016^{2017}+1}\)
B=\(\frac{2016^{2017}-3}{2016^{2018}-3}\)
so sánh:
A=\(\dfrac{2017^{2017}+1}{2017^{2018}+1}\)và B=\(\dfrac{2017^{2018}-2}{2017^{2019}-2}\)
BT1: Cho A = \(\dfrac{1}{2017}+\dfrac{2}{2017^2}+\dfrac{3}{2017^3}+...+\dfrac{2017}{2017^{2017}}+\dfrac{2018}{2017^{2018}}\)
Chứng minh rằng : A < \(\dfrac{2017}{2016^2}\)
A= \(\dfrac{2016}{2017}+\dfrac{2017}{2018}\) và B = 2
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1
Cho \(M=\dfrac{2018^{2017}+1}{2018^{2018}+1}\) và \(N=\dfrac{2018^{2016}+1}{2018^{2017}+1}\)
So sánh M và N
Giúp mk nha now!
BT1: So sánh:
2) \(\dfrac{2017}{2018}+\dfrac{2018}{2019}\) VỚI \(\dfrac{2017+2018}{2018+2019}\)
Không dùng máy tính cầm tay hãy so sánh
A = \(\dfrac{2017^{2017}+1}{2017^{2018}+1}\) và \(\dfrac{2017^{2016}+1}{2017^{2017}+1}\)