a) \(-\frac{2x}{5}=\frac{-6}{3}\)
\(\Rightarrow-2x.3=-6.5\)
\(\Rightarrow-2x=\frac{-6.5}{3}\)
\(\Rightarrow-2x=-10\)
\(\Rightarrow x=\frac{-10}{-2}\)
\(\Rightarrow x=5\)
b) \(\frac{x-2}{18}=\frac{-1}{6}\)
\(\Rightarrow\left(x-2\right).6=-1.18\)
\(\Rightarrow x-2=\frac{-1.18}{6}\)
\(\Rightarrow x-2=-3\)
\(\Rightarrow x=-3+2\)
\(\Rightarrow x=-1\)
c) \(\frac{x}{14}=\frac{6}{y}=\frac{-15}{35}\)
\(\Rightarrow\left[\begin{matrix}\frac{x}{14}=\frac{-15}{35}\\\frac{6}{y}=\frac{-15}{35}\end{matrix}\right.\Rightarrow\left[\begin{matrix}x.35=-15.14\\6.35=-15.y\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=\frac{-15.14}{35}\\y=\frac{6.35}{-15}\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-6\\y=-14\end{matrix}\right.\)
Vậy \(x=-6;y=-14\)
a) \(\frac{-2x}{5}=-\frac{6}{3}\)
\(\Leftrightarrow-6x=-30\)
\(\Leftrightarrow x=5\)
b) \(\frac{x-2}{18}=-\frac{1}{6}\)
\(\Leftrightarrow-6\left(x-2\right)=-18\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
c) \(\frac{x}{14}=\frac{6}{y}=-\frac{15}{35}\)
\(\Leftrightarrow\frac{x}{14}=\frac{6}{y}=-\frac{3}{7}\)
\(\Leftrightarrow\left\{\begin{matrix}x=-6\\y=-14\end{matrix}\right.\)