\(\left|x+5\right|+\left|y-4\right|=0\)
Vì \(\left|x+5\right|\ge0\); \(\left|y-4\right|\ge0\)
\(\Rightarrow\left|x+5\right|+\left|y-4\right|\ge0\)
Mà \(\left|x+5\right|+\left|y-4\right|=0\)
\(\Rightarrow\left|x+5\right|=0\) và \(\left|y-4\right|=0\)
+) \(\left|x+5\right|=0\Rightarrow x+5=0\Rightarrow x=-5\)
+) \(\left|y-4\right|=0\Rightarrow y-4=0\Rightarrow y=4\)
Vậy \(x=-5;y=4\)
\(\left|x+5\right|\)+\(\left|y-4\right|\)=0
Vì \(\left|x+5\right|\)\(\ge\)0;\(\left|y-4\right|\)\(\ge0\)
\(\Rightarrow\)\(\left|x+5\right|\)+\(\left|y-4\right|\)\(\ge\)0
Mà \(\left|x+5\right|\)+\(\left|y-4\right|\)=0
\(\Rightarrow\)\(\left|x+5\right|\)=0;\(\left|y-4\right|\)=0
+)\(\left|x+5\right|\)=0\(\Rightarrow\)x+5=0\(\Rightarrow\)x=-5
+)\(\left|y-4\right|\)=0\(\Rightarrow\)y-4=0\(\Rightarrow\)y=4
Vì \(\left|x+5\right|\)\(+\left|y-4\right|\)\(=0\)
Nên\(:\)\(\left|x+5\right|\)\(=0\)
Vậy \(x=0-5\)
\(\Rightarrow x=-5\)
| x + 5 | + | y - 4 | = 0
| x + 5 | = 0
x = 0- 5
x = -5
/ x+5/ + /y-4/ = 0 ta chia ra thành 2 trường hợp :
TH 1 : /x +5/ =0 suy ra 0-5 =-5
TH 2 /y-4/ =0 suy ra 0+4 =4
Vậy x là -5
y là 4