Cho x ; y thuộc R ; x^2 - y^2 = 4
Tìm Min : \(P=3x^4+2xy^3-12x^2+4xy\)
tìm GTNN
E=x - \(\sqrt{x-2005}\)
F=\(\sqrt{x^2-4x+4}\) + \(\sqrt{x^2+10x+25}\)
câu 1 : cho A=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
a, rút gọn
b, tính các giá trị của x để A < 0
câu 2 : cho B = \(\dfrac{10\sqrt{y}}{y-25}+\dfrac{5}{\sqrt{y}+5}-\dfrac{\sqrt{y}}{\sqrt{y}-5}\)
a, rút gọn B
b, Tính giá trị của y để B>0
\(\text{Cho x,y}\in R\text{ thỏa mãn }x^2+y^2=4.\text{Tìm Max}\)
\(A=\frac{xy}{x+y+2}\)
giai phuong trinh \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
Baì 2 : Tìm x ,biết
a, √X^2 =7
b,√(X-2020)^2 =10
c,√4-(X-2) + 3 √16X-32 = 8
d, √25X+25 -2 √64X +64 =7
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\)\(Cho\text{ }x,y\in R\text{ }thỏa\text{ }x^2+y^2=4.\text{Tìm Min}\)
\(A=\frac{xy}{x+y+1}\)