\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{2}{2012}\right)+\left(1+\dfrac{1}{2013}\right)+1\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(\Leftrightarrow x=\dfrac{2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}\)
\(\Leftrightarrow x=2014\)
Vậy \(x=2014\)
\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}\\ =\dfrac{2012}{2}+1+\dfrac{2011}{3}+1+...+\dfrac{1}{2013}+1+1\\ =\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\\ =2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\\ x=2014\)
Vậy x = 2014
\(x=\dfrac{\dfrac{2013}{1}+\dfrac{2012}{2}+......+\dfrac{2}{2012}+\dfrac{1}{2013}}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}}\)
\(=\dfrac{\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+......+\left(\dfrac{1}{2013}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{2014}{2}+\dfrac{2014}{3}+......+\dfrac{2014}{2013}+\dfrac{2014}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{2014}}\)
\(=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}}\)
=> x = 2014