Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Duy Thiệu

Tìm x để biểu thức sau có nghĩa

a.\(\sqrt{\dfrac{3}{2}x-\dfrac{9}{4}}\)

b.\(\sqrt{\dfrac{5}{5-3x}}\)

c.\(\sqrt{\dfrac{3}{4-x^2}}\)

d.\(\sqrt{x^2+3x+2}\)

Hắc Hường
11 tháng 6 2018 lúc 10:06

a) Để biểu thức có nghĩa

\(\Leftrightarrow\dfrac{3}{2}x-\dfrac{9}{4}\ge0\)

\(\Leftrightarrow\dfrac{3}{2}x\ge\dfrac{9}{4}\)

\(\Leftrightarrow x\ge\dfrac{3}{2}\)

b) Để biểu thức có nghĩa

\(\Leftrightarrow\dfrac{5}{5-3x}\ge0\)

\(\Leftrightarrow5-3x>0\) (Vì 5 > 0)

\(\Leftrightarrow-3x>-5\)

\(\Leftrightarrow3x< 5\)

\(\Leftrightarrow x< \dfrac{5}{3}\)

c) Để biểu thức có nghĩa

\(\Leftrightarrow\dfrac{3}{4-x^2}\ge0\)

\(\Leftrightarrow4-x^2>0\) (Vì 3 > 0)

\(\Leftrightarrow-x^2>-4\)

\(\Leftrightarrow x^2< 4\)

\(\Leftrightarrow x< -2\)

d) Để biểu thức có nghĩa thì

\(x^2+3x+2\ge0\)

\(\Leftrightarrow x^2+2x+x+2\ge0\)

\(\Leftrightarrow x\left(x+2\right)+\left(x+2\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\\x+1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x< -2\end{matrix}\right.\\x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -2\\x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)

Vậy ...


Các câu hỏi tương tự
Trang Phạm
Xem chi tiết
Trần Thị Mỹ Trinh
Xem chi tiết
Trần thị vân
Xem chi tiết
Ngáo Ngơ Alice
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nhi Lê Nguyễn Bảo
Xem chi tiết
Ly Ly
Xem chi tiết
phạm kim liên
Xem chi tiết