Giải:
Ta có:
\(\dfrac{x+2002}{16}+\dfrac{x+2003}{15}+\dfrac{x+2004}{14}+\dfrac{x+2005}{13}+\dfrac{x+2006}{12}=-5\)
\(\Leftrightarrow\dfrac{x+2002}{16}+\dfrac{x+2003}{15}+\dfrac{x+2004}{14}+\dfrac{x+2005}{13}+\dfrac{x+2006}{12}+5=0\)
\(\Leftrightarrow\dfrac{x+2002}{16}+1+\dfrac{x+2003}{15}+1+\dfrac{x+2004}{14}+1+\dfrac{x+2005}{13}+1+\dfrac{x+2006}{12}+1=0\)
\(\Leftrightarrow\dfrac{x+2002+16}{16}+\dfrac{x+2003+15}{15}+\dfrac{x+2004+14}{14}+\dfrac{x+2005+13}{13}+\dfrac{x+2006+12}{12}=0\)
\(\Leftrightarrow\dfrac{x+2018}{16}+\dfrac{x+2018}{15}+\dfrac{x+2018}{14}+\dfrac{x+2018}{13}+\dfrac{x+2018}{12}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{16}+\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
Vì \(\dfrac{1}{16}+\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\ne0\)
\(\Leftrightarrow x+2018=0\)
\(\Leftrightarrow x=-2018\)
Vậy ...