\(x^2+8x-3x-24=0\)
\(\Leftrightarrow x\left(x+8\right)-3\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x-3\right)=0\)
\(\Leftrightarrow x+8=0\) hoặc \(x-3=0\)
.. \(x+8=0\Leftrightarrow x=-8\)
.. \(x-3=0\Leftrightarrow x=3\)
Vậy \(S=\left\{-8;3\right\}\)
$x^2+8x-3x-24=0\\\Leftrightarrow x(x+8)-3(x+8)=0\\\Leftrightarrow (x-3)(x+8)=0\\\Leftrightarrow x-3=0 \ or \ x+8=0\\\Leftrightarrow x=3 \ or \ x=-8$