Giải:
a) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(x=\dfrac{-13}{12}\)
b) \(2.\left(x-\dfrac{1}{3}\right)=\left(\dfrac{1}{3}\right)^2+\dfrac{5}{9}\)
\(2.\left(x-\dfrac{1}{3}\right)=\dfrac{1}{9}+\dfrac{5}{9}\)
\(2.\left(x-\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(x-\dfrac{1}{3}=\dfrac{2}{3}:2\)
\(x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{1}{3}\)
\(x=\dfrac{2}{3}\)
c) \(\left|2x-\dfrac{3}{4}\right|-\dfrac{3}{8}=\dfrac{1}{8}\)
\(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{8}+\dfrac{3}{8}\)
\(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{1}{2}\\2x-\dfrac{3}{4}=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{8}\\x=\dfrac{1}{8}\end{matrix}\right.\)
d) \(\dfrac{2}{3}x+\dfrac{1}{6}x=3\dfrac{5}{8}\)
\(x.\left(\dfrac{2}{3}+\dfrac{1}{6}\right)=\dfrac{29}{8}\)
\(x.\dfrac{5}{6}=\dfrac{29}{8}\)
\(x=\dfrac{29}{8}:\dfrac{5}{6}\)
\(x=\dfrac{87}{20}\)