c) \(5^{x+2}+5^x=650\)
\(\Leftrightarrow 5^x(5^2+1)=650\)
\(\Leftrightarrow 5^x.26=650\)
\(\Rightarrow 5^x=25=5^2\Rightarrow x=2\)
d) \(81^x=(-3)^7\)
Ta thấy \(81^x>0, \forall x\in\mathbb{R}\)
\((-3)^7<0\)
Do đó pt đã cho vô nghiệm.
Lời giải:
a) \((2x-1)^3=(2x-1)^4\)
\(\Leftrightarrow (2x-1)^4-(2x-1)^3=0\)
\(\Leftrightarrow (2x-1)^3[(2x-1)-1]=0\)
\(\Leftrightarrow (2x-1)^3(2x-2)=0\)
\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ 2x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\end{matrix}\right.\)
b) \(2017^{x+2}=(2018-5^3)^{x+2}\)
\(\Rightarrow \left[\begin{matrix} x+2=0(1)\\ 2017=2018-5^3(2)\end{matrix}\right.\)
(1)\(\Rightarrow x=-2\)
(2): hiển nhiên vô lý
Vậy pt có nghiệm $x=-2$
c, 5^x+2 + 5^x = 650
<=> 5^x . 5^2 + 5^x . 1 = 650
<=> 5^x . 25 + 5^x . 1 = 650
<=> 5^x.(25+1)=650
<=>5^x.26=650
<=>5^x = 650 : 26
<=>5^x = 25
<=>5^x = 5^2
=> x = 2
Vậy x = 2