\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\)
\(\Rightarrow\left(5x^2+3x-2\right)^2-\left(4x^2-3x-2\right)^2=0\)
\(\Rightarrow\left[\left(5x^2+3x-2\right)-\left(4x^2-3x-2\right)\right]\left[\left(5x^2+3x-2\right)+\left(4x^2-3x-2\right)\right]=0\)
\(\Rightarrow\left(5x^2+3x-2-4x^2+3x+2\right)\left(5x^2+3x-2+4x^2-3x-2\right)=0\)
\(\Rightarrow\left(x^2+6x\right)\left(9x^2-4\right)=0\)
\(\Rightarrow x\left(x+6\right)\left[\left(3x\right)^2-2^2\right]=0\)
\(\Rightarrow x\left(x+6\right)\left(3x-2\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\\3x-2=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\\3x=2\\3x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)