-(1/3)-1/15-1/35-...-1/x.(x+2)=20/-21
=>1/3+1/15+1/35+...+1/x(x+2)=20/21
=>1/2 * (2/3 + 2/15 + 2/35 + ... + 2/x(x+2) )=20/21
=>\(\dfrac{2}{1\cdot3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{20}{21}:\dfrac{1}{2}\)
=>\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{40}{41}\)
=>\(1-\dfrac{1}{x+2}=\dfrac{40}{41}\)
=>\(\dfrac{1}{x+2}=1-\dfrac{40}{41}=\dfrac{1}{41}\)
=>x+2=41=>x=39
(1/3)-1/15-1/35-...-1/x.(x+2)=20/-21
=>1/3+1/15+1/35+...+1/x(x+2)=20/21
=>1/2 * (2/3 + 2/15 + 2/35 + ... + 2/x(x+2) )=20/21
=>1−13+13−15+15−17+...+1x−1x+2=40411−13+13−15+15−17+...+1x−1x+2=4041
=>