a) \(2\cdot\left|x-2\right|=\left|-18\right|\)
\(\Rightarrow\left|x-2\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x-7\end{matrix}\right.\)
b) \(\left|2x-3\right|-\left|-2\right|=15\)
\(\Rightarrow\left|2x-3\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-7\end{matrix}\right.\)
a) 2.|x-2|=|-18|
2.|x-2|=18
|x-2|=18:2
|x-2|=9
\(\Rightarrow\left[{}\begin{matrix}x-2=9\\x-2=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=11\\x=-7\end{matrix}\right.\)
Vậy x=11 hoặc x=-7
b) |2x-3|-|-2|=15
|2x-3|-2=15
|2x-3|=15+2
|2x-3|=17
\(\Rightarrow\left[{}\begin{matrix}2x-3=17\\2x-3=-17\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=20\\2x=-14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=-7\end{matrix}\right.\)
Vậy x=10 hoặc x=-7
a) \(2\cdot\left|x-2\right|=\left|-18\right|\)
\(2\cdot\left|x-2\right|=18\)
\(\left|x-2\right|=\dfrac{18}{2}\)
\(\left|x-2\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}x-2=9\\x-2=-9\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=9+2\\x=\left(-9\right)+2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=11\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{11;-7\right\}\)
b) \(\left|2x-3\right|-\left|-2\right|=15\)
\(\left|2x-3\right|-2=15\)
\(\left|2x-3\right|=15+2\)
\(\left|2x-3\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=17\\2x-3=-17\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x=17+3\\2x=\left(-17\right)+3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x=20\\2x=-14\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{20}{2}\\x=\dfrac{-14}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{10;-7\right\}\)
a) 2. / x - 2 / = / - 18 /
\(\Rightarrow\) 2. /x - 2 / = 18
\(\Rightarrow\) / x - 2 / = 18 : 2
\(\Rightarrow\) / x - 2 / = 9
\(\Rightarrow\) \(\left[{}\begin{matrix}x-2=18\\x-2=-18\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=&20\\x=&-16\end{matrix}\right.\)
b) / 2x - 3 / - / -2 / = 15
\(\Rightarrow\) / 2x - 3 / - 2 = 15
\(\Rightarrow\) / 2x - 3 / = 17
\(\Rightarrow\) \(\left[{}\begin{matrix}2x-3=17\\2x-3=-17\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}2x=20\\2x=-14\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=10\\x=-7\end{matrix}\right.\)
a)2 . |x - 2| = |-18|
2 . |x - 2| = 18
|x - 2| = 18 : 2
|x - 2| = 9
⇒ \(\left\{{}\begin{matrix}x-2=9\\x-2=\left(-9\right)\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\text{x = 9 + 2 }\\\text{x = (-9) + 2}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=11\\x=\left(-7\right)\end{matrix}\right.\)
Vậy x = 11 hay x = -7
b)|2x - 3| - |-2| = 15
|2x - 3| - 2 = 15
|2x - 3| = 15 + 2
|2x - 3| = 17
⇒ \(\left\{{}\begin{matrix}\text{2x - 3 = 17}\\\text{2x - 3 = (-17)}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x=17+3=20\\2x=\left(-17\right)+3=\left(-14\right)\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=20:2=10\\x=\left(-14\right):2=\left(-7\right)\end{matrix}\right.\)
Vậy x = 10 hay x = -7