a) \(142\cdot4^2-\left(7\cdot5^2+4x\right)=\left(4^3\cdot157\right):4^2\)
\(\Leftrightarrow142\cdot16-\left(7\cdot25+4x\right)=\left(64\cdot157\right):16\)
\(\Leftrightarrow2272-\left(175+4x\right)=10048:16\)
\(\Leftrightarrow2272-145-4x=628\)
\(\Leftrightarrow2097-4x=628\)
\(\Leftrightarrow-4x=-1469\)
\(\Leftrightarrow x=\dfrac{1469}{4}\)
Vậy \(x=\dfrac{1469}{4}\)
b) \(\left[\left(7x+23\right):6^2-5^2\right]:29=18^2\)
\(\Leftrightarrow\left(\dfrac{7x+23}{6^2}-25\right)\cdot\dfrac{1}{29}=18\)
\(\Leftrightarrow\left(\dfrac{7x+23}{36}-25\right)\cdot\dfrac{1}{29}=18\)
\(\Leftrightarrow\dfrac{7x+23-900}{36}\cdot\dfrac{1}{29}=18\)
\(\Leftrightarrow\dfrac{7x-877}{36}\cdot\dfrac{1}{29}=18\)
\(\Leftrightarrow\dfrac{7x-877}{1044}=18\)
\(\Leftrightarrow7x-877=18792\)
\(\Leftrightarrow7x=18792+877\)
\(\Leftrightarrow7x=19669\)
\(\Leftrightarrow x=\dfrac{19669}{7}\)