\(C=1.99+2.98+3.97+...+99.1\)
\(=1.99+2\left(99-1\right)+3\left(99-2\right)+...+99\left(99-98\right)\)
\(=99\left(1+2+3+...+99\right)-\left(2+2.3+3.4+...+98.99\right)\)
\(=\frac{99\left(1+99\right).99}{2}-\frac{98.99.100}{3}\)
\(=99.50.99-98.33.100\)
\(=499050-323400\)
\(=166650\)