Bài 3. Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Tìm tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x - 1}}\).

Hà Quang Minh
26 tháng 3 2024 lúc 4:40

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2;\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2\).

Do đó, tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x - 1}}\) là \(y = 2\).