3n+13\(⋮\)n+1
3n+3+10\(⋮\)n+1
3(n+1)+10\(⋮\)3(n+1)
Vì 3(n+1)\(⋮\)n+1
Buộc 10\(⋮\)n+1=>n+1ϵƯ(10)={1;2;5;10}
Với n+1=1=>n=0
n+1=2=>n=1
n+1=5=>n=4
n+1=10=>n=9
Vậy nϵ{0;1;4;9}
Ta có:
\(3n+13⋮n+1\)
\(\Rightarrow\left(3n+3\right)+10⋮n+1\)
\(\Rightarrow3\left(n+1\right)+10⋮n+1\)
\(\Rightarrow10⋮n+1\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=2\Rightarrow n=1\)
+) \(n+1=5\Rightarrow n=4\)
+) \(n+1=10\Rightarrow n=9\)
Vậy n=0 ; n=1 ; n=4 ; n=9
3n+13⋮⋮n+1
3n+3+10⋮⋮n+1
3(n+1)+10⋮⋮3(n+1)
Vì 3(n+1)⋮⋮n+1
Buộc 10⋮⋮n+1=>n+1ϵƯ(10)={1;2;5;10}
Với n+1=1=>n=0
n+1=2=>n=1
n+1=5=>n=4
n+1=10=>n=9
Vậy nϵ{0;1;4;9}