Giả sử đường tròn cố định (C) tâm I bán kính r nằm trên mặt phẳng (P). Xét đường thẳng d qua I và vuông góc với mặt phẳng (P). Đường thẳng d được gọi là trục của đường tròn. Giả sử O là tâm của mặt cấu (S) chứa đường tròn (C) thì O cách đều mọi điểm của (C).Vì vậy chân đường vuông góc hạc từ O xuống mặt phẳng (P) chính là tâm I của (C). Điều đó xảy ra khi và chỉ khi điểm O εd
Kết luận: Tập hợp tâm các mặt cấu luôn luôn chứa một đường tròn cố định cho trước là đường thẳng d vuông góc với mặt phẳng chứa đường tròn tại tâm của nó.