a: \(\dfrac{3}{x}>=1\)
nên \(\dfrac{3-x}{x}>=0\)
=>(x-3)/x<=0
=>0<x<=3
b: 1<4/x<=2
nên \(\left\{{}\begin{matrix}\dfrac{4}{x}>1\\\dfrac{4}{x}< =2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4-x}{x}>0\\\dfrac{4-2x}{x}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-4}{x}< 0\\\dfrac{x-2}{x}>=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< x< 4\\x\in\left(-\infty;0\right)\cup[2;+\infty)\end{matrix}\right.\Leftrightarrow2< =x< 4\)