a, Ta có : \(\frac{3n+4}{2n+2}=\frac{3n+3+1}{2n+2}=\frac{3\left(n+1\right)}{2\left(n+1\right)}+\frac{1}{2n+2}=\frac{3}{2}+\frac{1}{2n+2}\)
- Để biểu thức có giá trị nguyên thì \(\frac{1}{2n+2}\in Z\)
<=> \(2n+2\inƯ_{\left(1\right)}\)
<=> \(2n+2\in\left\{-1;1\right\}\)
<=> \(2n\in\left\{-3;-1\right\}\)
<=> \(2n\in\left\{-3;-1\right\}\)
<=> \(n\in\left\{-1,5;-0,5\right\}\)