Cho (C) (x-2)^2+(y+1)^2=25
Tìm M trên đường thẳng d: x+y+25=0 sao cho từ M kẻ 2 tiếp tuyến MB và MC tới (C) t/m
a/ tam giác MBC vuông
b. MNC đều
c/ Diện tích MBIC =20 ( I là tâm đường tròn )
d/ diện tích MBC =5
e/ đường thẳng BC đi quaE có (3;5)
Cho đường tròn (C) : (x − 1)2 + (y + 2)2 = 25 và đường thẳng d : x + 2y − 10 = 0. Tìm điểm M trên d sao cho: (a) Đường thẳng qua M, vuông góc với d là tiếp tuyến của (C). (b) Hai tiếp tuyến với (C) qua M tạo với nhau một góc vuông. (c) Tam giác tạo bởi M và hai tiếp điểm của các tiếp tuyến với (C) qua M là tam giác đều. (d) Hai tiếp tuyến với (C) qua M tạo với nhau một góc lớn nhất.
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
Cho đường tròn (C): \(\left(x-1\right)^2+\left(y-1\right)^2=25\) và M(0;-2). Hãy viết đường thẳng qua M và cắt đường tròn tại 2 điểm A, B sao cho diện tích tam giác IAB lớn nhất. (I là tâm đường tròn)
Trong mặt phẳng với hệ tọa độ Oxy,cho điểm M(2,1) và đường thẳng d: x-y+1=0. Viết phương trình đường tròn đi qua M cắt d ở 2 điểm A,B phân biệt sao cho tam giác MAB vuông tại M và có diện tích bằng 2
cho (c): \(x^2+y^2-4x+2y-15=0\)
có i là tâm ,đường thẳng \(\Delta\) đi qua M (1;-3) cắt đường tròn (c) tại 2 điểm A,B sao cho \(\Delta IAB\) cps diện tích bằng 8. viết PT đường thẳng \(\Delta\)
Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x-2y-14=0\) và điểm A( 2; 0). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua A và cắt (C) tại hai điểm M, N sao cho tam giác IMN có diện tích lớn nhất.
Giúp mk vs đang cần gấp, thanks trước
Trong mặt phẳng Oxy,cho đường tròn (C):x2+y2-2x-2y-14=0 và điểm A(2;0).Gọi I là tâm của (C).Viết phương trình đường thẳng đi qua A và cắt (C) tại hai điểm M,N sao cho tam giác IMN có diện tích lớn nhất
Trong mặt phẳng Oxy, cho đường tròn ( C ) : x2+y2-2x-2y-14=0 và điểm A(2;0) . gọi I là tâm của ( C ). Viết phương trình đường thẳng đi qua A và cắt ( C ) tại hai diểm M,N sao cho tam giác IMN có diện tích lớn nhất