\(x^2-5x+m-3=0\)
có 2 nghiệm x1;x2 thoả mãn theo vi-et ta có
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=5\left(1\right)\\x_1x_2=\frac{c}{a}=m-3\left(2\right)\end{matrix}\right.\)
theo đề bài ta có
\(x^2_1-2x_1x_2+3x_2=1\)(3)
thế (1) vào (3) ta được
\(x^2_1-2x_1\left(5-x_1\right)+3\left(5-x_1\right)=1\)
\(x^2_1-10x_1+2x^2_1+15-3x_1=1\)
\(3x^2_1-13x_1+14=0\)
=>\(\left[{}\begin{matrix}x_1=\frac{7}{3};x_2=\frac{8}{3}\\x_1=2;x_2=3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\frac{83}{9}\\m=9\end{matrix}\right.\)
vậy .....