\(A=3x^2+y^2-2x+y\)
\(=3\left(x^2-\dfrac{1}{3}x.2+\dfrac{1}{9}-\dfrac{1}{9}\right)+\left(y^2+2.y.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+\left(y+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=3\left(x-\dfrac{1}{3}\right)^2+\left(y+\dfrac{1}{2}\right)^2-\dfrac{7}{12}\ge\dfrac{-7}{12}\)
Dấu " = " khi \(\left\{{}\begin{matrix}3\left(x-\dfrac{1}{3}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{-7}{12}\) khi \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-1}{2}\end{matrix}\right.\)