Câu này làm ntn vậy?
Tìm GTLN, NN của hàm số: y = \(\frac{\cos x+2}{\sin x+\cos x+2}\)
tìm GTLN ,GTNN của hàm số f(X)=sin4x+cos2x+2
tìm GTLN và GTNN cảu hàm số X+ căn2 cosX trên đoạn (0;π/2)
cần gấp
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
giá trị lớn nhất của hàm số y=2sinx-4/3 sin^3 x trên [0;π]
Câu 1 : Tìm GTNN của hàm số \(y=cos2x+2sin^3x\) trên \(\left[0;\Pi\right]\)
A. 1 B. \(\frac{2}{3}\) C. 0 D. \(\frac{19}{27}\)
Câu 2 : Tìm m sao cho GTLN của hàm số \(y=x^3-3x+2m-1\) trên đoạn [0;2] bằng 5
A. 2 B. 3 C. 4 D. -2
Câu 3 : Tìm m sao cho GTLN của hàm số \(y=\frac{2x-m}{x-3}\) trên đoạn [0;2] bằng 3
A. m = 9 B. m = 7 C. m = 6 D. m = 1
Câu 4 : Cho các số thực dương x , y thỏa mãn xy + y = 2 . Tìm GTNN của biểu thức P = x + y2
A. 1 B. 2 C. \(\frac{3}{2}\) D. \(\frac{5}{2}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau :
a) \(f\left(x\right)=-3x^2+4x-8\) trên đoạn \(\left[0;1\right]\)
b) \(f\left(x\right)=x^3+3x^2-9x-7\) trên đoạn \(\left[-4;3\right]\)
c) \(f\left(x\right)=\sqrt{25-x^2}\) trên đoạn \(\left[-4;4\right]\)
d) \(f\left(x\right)=\left|x^2-3x+2\right|\) trên đoạn \(\left[-10;10\right]\)
e) \(f\left(x\right)=\dfrac{1}{\sin x}\) trên đoạn \(\left[\dfrac{\pi}{3};\dfrac{5\pi}{6}\right]\)
g) \(f\left(x\right)=2\sin x+\sin2x\) trên đoạn \(\left[0;\dfrac{3\pi}{2}\right]\)
Tìm GTLN và GTNN : f(x) = 2x3 + \(\frac{3}{x^2}\) + 5 trên đoạn [ 0;3 ]