Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ngọc Thảo

Tìm giá trị nhỏ nhất

10x2 + 15x + 8x - 12xy + 4y2

Các bạn giải gấp cho mình nha . Mình đag cần rất gấp .

Phong Thần
18 tháng 9 2018 lúc 20:02

Đặt \(A=10x^2+15x+8x-12xy+4y^2\)

\(=\left(9x^2-12xy+4y^2\right)+\left(x^2+15x+8x\right)\)

\(=\left(3x-2y\right)^2+\left(x^2+23x\right)\)

\(=\left(3x-2y\right)^2+\left(x^2+2.x\dfrac{23}{2}+\dfrac{529}{4}-\dfrac{529}{4}\right)\)

\(=\left(3x-2y\right)^2+\left(x+\dfrac{23}{2}\right)^2-\dfrac{529}{4}\)

\(\left(3x-2y\right)^2\ge0\) với mọi x,y

\(\left(x+\dfrac{23}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x-2y\right)^2+\left(x+\dfrac{23}{2}\right)^2-\dfrac{529}{4}\ge-\dfrac{529}{4}\) với mọi x,y

\(\Rightarrow Amin=-\dfrac{529}{4}\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+\dfrac{23}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\x=-\dfrac{23}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left(-\dfrac{23}{2}\right)=2y\\x=-\dfrac{23}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{69}{2}=2y\\x=-\dfrac{23}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=-\dfrac{69}{4}\\x=-\dfrac{23}{2}\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức là -529/4 khi y = -69/4 và x = -23/2


Các câu hỏi tương tự
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết