Đặt \(A=\frac{m+1}{\sqrt{m^2+4}}\)
\(A^2=\frac{m^2+2m+1}{m^2+4}\)
\(\Rightarrow\left(A^2-1\right)m^2-2A^2m+3A^2=0\)
Đk để pt có ng0: \(\Delta\ge0\)
\(\Rightarrow4A^4-12A^2\left(A^2-1\right)\ge0\)
\(\Leftrightarrow-8A^4+12A^2\ge0\)
\(\Rightarrow0\le A^2\le\frac{3}{2}\)
Amax\(=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2}\Leftrightarrow\frac{m+1}{\sqrt{m^2+4}}=\frac{\sqrt{6}}{2}\)
Đến đây thì tìm m.