y=\(\frac{x^2+2}{x^2+x+1}\)
* Mẫu thức: x2+x+1
=x2+x+\(\frac{1}{4}\)+\(\frac{3}{4}\)
=(x+\(\frac{1}{2}\))2+\(\frac{3}{4}\)
Ta có:
x2≥0 ∀ x ⇒x2+2 ≥ 2 ∀ x
(x+\(\frac{1}{2}\))2 ≥ 0 ∀ x
⇒ (x+\(\frac{1}{2}\))2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\) ∀ x
⇒\(\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\) ≤ \(\frac{4}{3}\) ∀ x
⇒ \(\frac{2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)≤ \(\frac{8}{3}\) ∀ x
Như đã chứng minh trên ta có:
\(\frac{x^2+2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\) ≤ \(\frac{8}{3}\) ∀ x
Vậy giá trị lớn nhất của y=\(\frac{8}{3}\). Dấu ''='' xảy ra khi (1): x2+2=0
⇔x2=-2 (loại)
(2) : x+\(\frac{1}{2}\)=0
⇔x=-\(\frac{1}{2}\)( thỏa mãn)