Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
1.cho phương trình \(x^2+5x+m-2=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn hệ thức
\(\dfrac{1}{ \left( x_1-1\right)^2}+\dfrac{1}{\left(x_2-1\right)^2}=1\)
Cho phương trình \(x^2-\left(m+1\right)x+m=0\left(1\right)\)(với m là tham số)
a.Giải phương trình (1) khi m=-2
b.Tìm giá trị của m để phương trình (1) có nghiệm phân biệt x1,x2 thỏa mãn:
(\(x^2_1-mx_1+x_2+2m\))\(\left(x^2_2-mx_2+x_1+2m\right)=9x_1x_2\)
Cho phương trình: \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) mà biểu thức M=\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt giá trị nhỏ nhất.
Tìm m nguyên dương để pht: \(x^2-2\left(m-1\right)x+2m-6=0\) có 2 nghiệm x1, x2 sao cho:\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_1}{x_2}\right)^2\) có giá trị nguyên
Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(-2< x_1< x_2< 2\)
Tìm hệ thức liên hệ giữa x1 và x2 không chứa m
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Cho PT bậc hai: x^2-2(m-2)x+m^2+2m-3=0
a) Tìm các giá trị của m để PT có 2 nghiệm x1, x2 thỏa mãn hệ thức: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
1. Cho phương trình: x2 – 2(2m – 1)x + 8m - 8 = 0.(1)
a) Giải (1) khi m = 2.
b, Tìm m để phương trình có hai nghiệm phân biệt
c) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn A = đạt giá trị nhỏ nhất
Cho phương trình \(x^2-4mx+3m^2-3=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thỏa mãn \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|\)đặt Max